MAT102 Intro to Math Proofs

Xinli Wang
University of Toronto Mississauga
xinliw.wang@utoronto.ca

May 9, 2019

Overview

AM-GM Inequality

Motivation

An investor has annual return of $5 \%, 10 \%, 20 \%,-50 \%$, and 20% for five consecutive years. Using the arithmetic mean, the investor's average annual return rate is Does this number capture what happened in real life? Let's assume the investor started with \$1000.

Year	Starting Equity	Return $\%$	Return \$	Closing equity
1	$\$ 1000$	5%	$\$ 50$	$\$$
2	$\$$	10%	$\$$	$\$$
3	$\$$	20%	$\$$	$\$$
4	$\$$	-50%	$-\$$	$\$$
5	$\$$	20%	$\$$	$\$$

The actual 5 year return on the account is The geometric mean is used to tackle continuous data series which the arithmetic mean is unable to accurately reflect.

Assume $R_{n}=$ growth rate for year n , we define the geometric mean for investments to be

$$
\left(\prod_{n=1}^{N}\left(1+R_{n}\right)\right)^{\frac{1}{N}}-1
$$

In the previous example, if we assume the average rate of return to be $R_{\text {ave }}$, then we should have

$$
1000 \times\left(1+R_{\text {ave }}\right)^{5}=1000 \times(1+5 \%)(1+10 \%)(1+20 \%)(1-50 \%)(1+20 \%)
$$

which means the average return should be $R_{\text {ave }}=-3.62 \%$ instead of the arithmetic mean 1% that we found earlier.

General definition of geometric mean

Note that in the previous example, if we let $\bar{x}=1+R_{\text {ave }}, x_{1}=1+R_{1}, x_{2}=1+R_{2}, \cdots, x_{5}=1+R_{5}$, then we would have

$$
\bar{x}=\left(\prod_{n=1}^{5} x_{i}\right)^{\frac{1}{5}}
$$

This is how we define the geometric mean in general.

Geometric mean definition

The geometric mean is defined as the n-th root of the product of n numbers, i.e., for a set of numbers $x_{1}, x_{2}, \ldots, x_{n}$, the geometric mean is defined as

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}=\sqrt[n]{x_{1} x_{2} \cdots x_{n}}
$$

AM-GM inequality

for any list of n nonnegative real numbers $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}}
$$

and that equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$.

Proof of AM-GM inequality when $n=2$

If there are two elements in the series, the AM-GM states this:

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

The proof for this simplified case is quite simple:

Proof

We'll use standard induction method to prove AM-GM inequality.
When $n=1$: the conclusion holds;
when $n=2$: we proved the claim above.
We must show that

$$
\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot x_{2} \cdots x_{n}} .
$$

Without loss of generality, we may rescale the x_{i} so that $x_{1} \cdots x_{n}=1$. If all $x_{i}=1$, the proof is trivial. Thus, assume at least one $x_{i}>1$ and one $x_{i}<1$; we assume that $x_{1}>1$ and $x_{2}<1$.

By the inductive assumption, we have

$$
\frac{x_{1} x_{2}+x_{3}+\cdots+x_{n}}{n-1} \geq \sqrt[n-1]{\left(x_{1} x_{2}\right) a_{3} \cdots x_{n}}=1
$$

Thus we have $x_{1} x_{2}+x_{3}+\cdots+x_{n} \geq n-1$. We need to show

$$
x_{1}+x_{2}+x_{3}+\cdots+x_{n} \geq n
$$

This would follow if $x_{1}+x_{2} \geq x_{1} x_{2}+1$. But

$$
x_{1}+x_{2}-\left(x_{1} x_{2}+1\right)=\left(x_{1}-1\right)\left(1-x_{2}\right) \geq 0
$$

proving the claim.

Application of AM-GM inequality

A farmer wants to fence in 60000 square meter of land in a rectangular plot along a straight highway. The fence he plans to use along the highway costs $\$ 2$ per meter, while the fence for the other three sides costs $\$ 1$ per meter. How much of each type of fence will he have to buy in order to keep expenses to a minimum? What is the minimum expense?

Solution

